Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
Arch Virol ; 169(5): 106, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644429

RESUMO

In this study, conducted at the National Institute of Health, Islamabad, during an outbreak of human respiratory syncytial virus (hRSV) from December 2022 to January 2023, the first whole-genome sequences of hRSV isolates from Islamabad, Pakistan, were determined. Out of 10 positive samples, five were sequenced, revealing the presence of two genotypes: RSV-A (GA2.3.5, ON1 strain) and RSV-B (GB5.0.5.a, BA-10 strain). A rare non-synonymous substitution (E232G) in G the protein and N276S in the F protein were found in RSV-A. In RSV-B, the unique mutations K191R, Q209R, and I206M were found in the F protein. These mutations could potentially influence vaccine efficacy and viral pathogenicity. This research underscores the importance of genomic surveillance for understanding RSV diversity and guiding public health responses in Pakistan.


Assuntos
Surtos de Doenças , Genoma Viral , Genótipo , Filogenia , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Paquistão/epidemiologia , Humanos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Genoma Viral/genética , Mutação , Sequenciamento Completo do Genoma , Genômica , Feminino , Lactente , Masculino , Proteínas Virais de Fusão/genética , Pré-Escolar
2.
J Virol ; 96(7): e0190421, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285685

RESUMO

Respiratory syncytial virus (RSV) is a leading cause of pediatric acute respiratory infection worldwide. There are currently no approved vaccines or antivirals to combat RSV disease. A few transformed cell lines and two historic strains have been extensively used to study RSV. Here, we reported a thorough molecular and cell biological characterization of HEp-2 and A549 cells infected with one of four strains of RSV representing both major subgroups as well as historic and more contemporary genotypes (RSV/A/Tracy [GA1], RSV/A/Ontario [ON], RSV/B/18537 [GB1], and RSV/B/Buenos Aires [BA]) via measurements of viral replication kinetics and viral gene expression, immunofluorescence-based imaging of gross cellular morphology and cell-associated RSV, and measurements of host response, including transcriptional changes and levels of secreted cytokines and growth factors. IMPORTANCE Infection with the respiratory syncytial virus (RSV) early in life is essentially guaranteed and can lead to severe disease. Most RSV studies have involved either of two historic RSV/A strains infecting one of two cell lines, HEp-2 or A549 cells. However, RSV contains ample variation within two evolving subgroups (A and B), and HEp-2 and A549 cell lines are genetically distinct. Here, we measured viral action and host response in both HEp-2 and A549 cells infected with four RSV strains from both subgroups and representing both historic and more contemporary strains. We discovered a subgroup-dependent difference in viral gene expression and found A549 cells were more potently antiviral and more sensitive, albeit subtly, to viral variation. Our findings revealed important differences between RSV subgroups and two widely used cell lines and provided baseline data for experiments with model systems better representative of natural RSV infection.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Células A549 , Antivirais/farmacologia , Linhagem Celular , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Índice de Gravidade de Doença , Especificidade da Espécie , Replicação Viral
3.
Infect Genet Evol ; 98: 105209, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032683

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of hopitalisation in young children with respiratory tract infections (RTI). The aim of this research project was to analyse RSV genotypes and the diversification of RSV strains among hospitalised children in Heidelberg, Germany. METHODS: We prospectively analysed nasopharyngeal swabs (NPS) from children who were hospitalised with acute RTI at the University Hospital Heidelberg, Germany, during winter seasons 2014 to 2017. RSV RT-PCR and RSV sequence analysis of the G gene coding for the attachment glycoprotein were performed. Clinical data was obtained using a standardised questionnaire. RESULTS: RSV was detected in 405 out of 946 samples from hospitalised children. Most RSV positive children were below the age of two years (84.4%) and had a lower RTI (78.8%). The majority of RSV positive children was male, significantly younger than RSV negative children with a median age of 0.39 years and with more severe respiratory symptoms. Out of 405 positive samples, 317 RSV strains were successfully sub-grouped into RSV subtypes A (57.4%; 182/317) and B (42.6%; 135/317). Both RSV subtypes cocirculated in all analysed winter seasons. Phylogenetic analysis of 317 isolates revealed that the majority of RSV-A strains (180/182) belonged to the ON1 genotype, most RSV-B strains could be attributed to the BAIX genotype (132/135). ON1 and BAIX strains showed a sub-differentiation into different lineages and we were able to identify new (sub)genotypes. CONCLUSION: Analysis of the molecular epidemiology of RSV from different seasons revealed the cocirculation and diversification of RSV genotypes ON1 and BAIX.


Assuntos
Criança Hospitalizada/estatística & dados numéricos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Adolescente , Criança , Pré-Escolar , Feminino , Alemanha/epidemiologia , Humanos , Lactente , Recém-Nascido , Masculino , Epidemiologia Molecular , Filogenia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação
4.
J Med Virol ; 94(2): 549-556, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34730256

RESUMO

To investigate the molecular characteristics of human respiratory syncytial virus (HRSV) detected in Gyeonggi Province from 2015/16 to 2017/18, 2331 specimens from patients with sporadic acute respiratory illness and 85 specimens from four HRSV outbreaks in the postpartum care center were analyzed by real-time reverse transcription PCR. HRSVs were detected in 97 of the 2416 (4.0%) specimens, and among the positive specimens, 38 (39.2%) were identified as HRSV-A and 59 (60.8%) as HRSV-B. During the study periods, HRSV-B predominated in all seasons, except in 2016/17 during which HRSV-A predominated. Depending on the age groups, HRSV prevalence was the highest in 0- to 2-year-old patients. Comparison of noninfected subjects with HRSV-infected subjects revealed that HRSV infection more frequently resulted in fever, nasal obstruction, and wheezing, although the frequency of sore throat was low; however, comparison of the symptoms between HRSV-A- and HRSV-B-infected patients revealed no significant differences in symptoms. Phylogenetic analysis showed that all HRSV-A patients had an ON1 genotype, and all HRSV-B patients had an BA9 genotype. These results provide a valuable reference regarding the circulating pattern and molecular characterization of HRSV. Continuous monitoring will be essential to detect newly emerging HRSV genotypes.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Surtos de Doenças , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , República da Coreia/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Estações do Ano , Adulto Jovem
5.
Nat Commun ; 12(1): 5125, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446722

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of lower respiratory tract infection in young children globally, but little is known about within-host RSV diversity. Here, we characterised within-host RSV populations using deep-sequencing data from 319 nasopharyngeal swabs collected during 2017-2020. RSV-B had lower consensus diversity than RSV-A at the population level, while exhibiting greater within-host diversity. Two RSV-B consensus sequences had an amino acid alteration (K68N) in the fusion (F) protein, which has been associated with reduced susceptibility to nirsevimab (MEDI8897), a novel RSV monoclonal antibody under development. In addition, several minor variants were identified in the antigenic sites of the F protein, one of which may confer resistance to palivizumab, the only licensed RSV monoclonal antibody. The differences in within-host virus populations emphasise the importance of monitoring for vaccine efficacy and may help to explain the different prevalences of monoclonal antibody-escape mutants between the two subgroups.


Assuntos
Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Idoso , Variação Antigênica , Feminino , Variação Genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Replicação Viral
6.
Pediatr Infect Dis J ; 40(9): 808-813, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34260483

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection (ARI) in young children worldwide. Multiple factors affect RSV disease severity, and data regarding differences between RSV subtypes severity are controversial. This study aimed to evaluate the clinical characteristics, seasonality and severity of RSV subtypes in children. METHODS: As part of a prospective ARI surveillance study conducted from March 2010 to March 2013 in Amman, Jordan, children less than 2 years with fever and/or respiratory symptoms were enrolled. Demographic and clinical characteristics were collected through parental interviews and medical chart review. The treating physician collected severity score data at admission. Nasal and throat swabs were collected and tested. Multivariable regression models were used to compare the odds of increased disease severity across a priori selected predictors of interest. RESULTS: Overall, 1397/3168 (44%) children were RSV positive, with a mean age of 5.3 months (±4.8 SD), 59.7% were male, 6.4% had an underlying medical condition (UMC), 63.6% were RSV-A positive, 25.2% were RSV-B positive, 0.6% were positive for both, and 10.6% could not be typed. Both RSV subtypes peaked in January-March of each year. RSV A-positive children were more likely to present with decreased appetite but less likely to have viral co-detection than RSV B-positive children. Independent factors associated with RSV disease severity included cycle threshold value, vitamin D level, age, UMC, prematurity and severity score, but not RSV subtypes. CONCLUSION: RSV subtypes co-circulated and had similar severity profiles; future preventive and treatment measures should target both subtypes.


Assuntos
Hospitalização/estatística & dados numéricos , Gravidade do Paciente , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Estações do Ano , Criança , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Jordânia/epidemiologia , Masculino , Estudos Prospectivos , Vírus Sincicial Respiratório Humano/patogenicidade , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia
7.
Sci Rep ; 11(1): 12941, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155268

RESUMO

Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10-3 and 1.92 × 10-3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.


Assuntos
Evolução Molecular , Variação Genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Teorema de Bayes , Genes Virais , Genótipo , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único , RNA Viral , Recombinação Genética , Seleção Genética
8.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073414

RESUMO

Over two years (2012-2014), 719 nasopharyngeal samples were collected from 6-week- to 12-month-old infants presenting at the emergency department with moderate to severe acute bronchiolitis. Viral testing was performed, and we found that 98% of samples were positive, including 90% for respiratory syncytial virus, 34% for human rhino virus, and 55% for viral co-detections, with a predominance of RSV/HRV co-infections (30%). Interestingly, we found that the risk of being infected by HRV is higher in the absence of RSV, suggesting interferences or exclusion mechanisms between these two viruses. Conversely, coronavirus infection had no impact on the likelihood of co-infection involving HRV and RSV. Bronchiolitis is the leading cause of hospitalizations in infants before 12 months of age, and many questions about its role in later chronic respiratory diseases (asthma and chronic obstructive pulmonary disease) exist. The role of virus detection and the burden of viral codetections need to be further explored, in order to understand the physiopathology of chronic respiratory diseases, a major public health issue.


Assuntos
Bronquiolite Viral/virologia , Coinfecção/virologia , Bronquiolite Viral/epidemiologia , Coinfecção/epidemiologia , Serviço Hospitalar de Emergência , França/epidemiologia , Humanos , Lactente , Reação em Cadeia da Polimerase Multiplex , Nasofaringe/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação
9.
Arch Virol ; 166(9): 2407-2418, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34131849

RESUMO

Respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and is a public health threat globally. To investigate the spatiotemporal dynamics of RSV evolution, we performed systematic phylogenetic analysis using all available sequences from the GenBank database, together with sequences from Shanghai, China. Both RSV-A and RSV-B appear to have originated in North America, with an inferred origin time of 1954.0 (1938.7-1967.6) and 1969.7 (1962.6-1975.5), respectively. BA-like strains of RSV-B, with a 60-nt insertion, and the ON1 strain of RSV-A, with a 72-nt insertion, emerged in 1997.6 (1996.2-1998.6) and 2010.1 (2009.1-2010.3), respectively. Since their origin, both genotypes have gradually replaced the former circulating genotypes to become the dominant strain. The population dynamic of RSV-A showed a seasonal epidemic pattern with obvious expansion in the periods of 2006-2007, 2010-2011, 2011-2012, and 2013-2014. Thirty fixed amino acid substitutions were identified during the divergence of NA4 from GA1 genotypes of RSV-A, and 13 were found during the divergence of SAB4 from GB1 of RSV-B. Importantly, ongoing evolution has occurred since the emergence of ON1, including four amino acid substitutions (I208L, E232G, T253K, and P314L). RSV-A genotypes GA5, NA4, NA1, and ON1 and RSV-B genotypes CB1, SAB4, BA-C, BA10, BA7, and BA9 were co-circulating in China from 2005 to 2015. In particular, RSV-A genotype ON1 was first detected in China in 2011, and it completely replaced GA2 to become the predominant strain after 2016. These data provide important insights into the evolution and epidemiology of RSV.


Assuntos
Filogenia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Criança , China/epidemiologia , Genótipo , Humanos , Epidemiologia Molecular , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções Respiratórias/virologia
10.
mSphere ; 6(3)2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980679

RESUMO

Human respiratory syncytial virus (HRSV) is the leading cause of bronchiolitis in infants. Two subgroups of HRSV (A and B) routinely cocirculate. Most research has been performed with HRSV-A strains because these are easier to culture than HRSV-B strains. In this study, we aimed to compare the replicative fitness and HRSV-induced innate cytokine responses of HRSV-A and HRSV-B strains in disease-relevant cell culture models. We used two recombinant (r) clinical isolate-based HRSV strains (A11 and B05) and one recombinant laboratory-adapted HRSV strain (A2) to infect commercially available nasal, bronchial, and small-airway cultures. Epithelial cells from all anatomical locations were susceptible to HRSV infection despite the induction of a dominant type III interferon response. Subgroup A viruses disseminated and replicated faster than the subgroup B virus. Additionally, we studied HRSV infection and innate responses in airway organoids (AOs) cultured at air-liquid interface (ALI). Results were similar to the commercially obtained bronchial cells. In summary, we show that HRSV replicates well in cells from both the upper and the lower airways, with a slight replicative advantage for subgroup A viruses. Lastly, we showed that AOs cultured at ALI are a valuable model for studying HRSV ex vivo and that they can be used in the future to study factors that influence HRSV disease severity.IMPORTANCE Human respiratory syncytial virus (HRSV) is the major cause of bronchiolitis and pneumonia in young infants and causes almost 200,000 deaths per year. Currently, there is no vaccine or treatment available, only a prophylactic monoclonal antibody (palivizumab). An important question in HRSV pathogenesis research is why only a fraction (1 to 3%) of infants develop severe disease. Model systems comprising disease-relevant HRSV isolates and accurate and reproducible cell culture models are indispensable to study infection, replication, and innate immune responses. Here, we used differentiated AOs cultured at ALI to model the human airways. Subgroup A viruses replicated better than subgroup B viruses, which we speculate fits with epidemiological findings that subgroup A viruses cause more severe disease in infants. By using AOs cultured at ALI, we present a highly relevant, robust, and reproducible model that allows for future studies into what drives severe HRSV disease.


Assuntos
Brônquios/virologia , Nariz/virologia , Organoides/microbiologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/fisiologia , Replicação Viral , Brônquios/citologia , Citocinas/análise , Citocinas/imunologia , Células Epiteliais/virologia , Humanos , Imunidade Inata , Técnicas In Vitro , Cinética , Nariz/citologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/imunologia
11.
Sci Rep ; 11(1): 3452, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568737

RESUMO

Respiratory syncytial virus (RSV) is a major cause of respiratory infections and is classified in two main groups, RSV-A and RSV-B, with multiple genotypes within each of them. For RSV-B, more than 30 genotypes have been described, without consensus on their definition. The lack of genotype assignation criteria has a direct impact on viral evolution understanding, development of viral detection methods as well as vaccines design. Here we analyzed the totality of complete RSV-B G gene ectodomain sequences published in GenBank until September 2018 (n = 2190) including 478 complete genome sequences using maximum likelihood and Bayesian phylogenetic analyses, as well as intergenotypic and intragenotypic distance matrices, in order to generate a systematic genotype assignation. Individual RSV-B genes were also assessed using maximum likelihood phylogenetic analyses and multiple sequence alignments were used to identify molecular markers associated to specific genotypes. Analyses of the complete G gene ectodomain region, sequences clustering patterns, and the presence of molecular markers of each individual gene indicate that the 37 previously described genotypes can be classified into fifteen distinct genotypes: BA, BA-C, BA-CC, CB1-THB, GB1-GB4, GB6, JAB1-NZB2, SAB1, SAB2, SAB4, URU2 and a novel early circulating genotype characterized in the present study and designated GB0.


Assuntos
Genes Virais , Genoma Viral , Genótipo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Geografia , Humanos , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/isolamento & purificação , Análise de Sequência de DNA , Proteínas do Envelope Viral/genética , Sequenciamento Completo do Genoma
12.
Viruses ; 13(1)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477301

RESUMO

Human respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. It is actively evolving under environmental and herd immunity influences. This work presents, for the first time, sequence variability analysis of RSV G gene and G protein using St. Petersburg (Russia) isolates. Viruses were isolated in a cell culture from the clinical samples of 61 children hospitalized (January-April 2014) with laboratory-confirmed RSV infection. Real-time RT-PCR data showed that 56 isolates (91.8%) belonged to RSV-A and 5 isolates (8.2%) belonged to RSV-B. The G genes were sequenced for 27 RSV-A isolates and all of them belonged to genotype ON1/GA2. Of these RSV-A, 77.8% belonged to the ON1(1.1) genetic sub-cluster, and 14.8% belonged to the ON1(1.2) sub-cluster. The ON1(1.3) sub-cluster constituted a minor group (3.7%). Many single-amino acid substitutions were identified in the G proteins of St. Petersburg isolates, compared with the Canadian ON1/GA2 reference virus (ON67-1210A). Most of the amino acid replacements were found in immunodominant B- and T-cell antigenic determinants of G protein. These may affect the antigenic characteristics of RSV and influence the host antiviral immune response to currently circulating viruses.


Assuntos
Variação Genética , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Proteínas do Envelope Viral/genética , Genótipo , História do Século XXI , Humanos , Filogenia , Vigilância em Saúde Pública , Infecções por Vírus Respiratório Sincicial/história , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Federação Russa/epidemiologia , Análise de Sequência de DNA , Proteínas do Envelope Viral/metabolismo
13.
J Med Virol ; 93(6): 3401-3411, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32779756

RESUMO

The objectives of this study were to investigate the prevalence of respiratory syncytial virus (RSV) infections in Bulgaria, to characterize the genetic diversity of the RSV strains, and to perform amino acid sequence analysis of the RSV G protein. Clinical, epidemiological data and nasopharyngeal swabs were prospectively collected from children aged less than 5 years presenting with acute respiratory infections from October 2016 to September 2018. Real-time polymerase chain reaction for 12 respiratory viruses, and sequencing, phylogenetic, and amino acid analyses of the RSV G gene/protein were performed. Of the 875 children examined, 645 (73.7%) were positive for at least one viral respiratory pathogen. RSV was the most commonly detected virus (26.2%), followed by rhinoviruses (15%), influenza A (H3N2) (9.7%), adenoviruses (9%), bocaviruses (7.2%), human metapneumovirus (6.1%), parainfluenza viruses 1/2/3 (5.8%), influenza type B (5.5%), and A(H1N1)pdm09 (3.4%). The detection rate for RSV varied across two winter seasons (36.7% vs 20.3%). RSV-B cases outnumbered those of the RSV-A throughout the study period. RSV was the most common virus detected in patients with bronchiolitis (45.1%) and pneumonia (24%). Phylogenetic analysis indicated that all the sequenced RSV-A strains belonged to the ON1 genotype and the RSV-B strains were classified as BA9 genotype. Amino acid substitutions at 15 and 22 positions of the HVR-2 were identified compared with the ON1 and BA prototype strains, respectively. This study revealed the leading role of RSV as a causative agent of serious respiratory illnesses in early childhood, year-on-year fluctuations in RSV incidence, the dominance of RSV-B, and relatively low genetic diversity in the circulating RSV strains.


Assuntos
Genótipo , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Bulgária/epidemiologia , Pré-Escolar , Feminino , Variação Genética , Humanos , Lactente , Recém-Nascido , Masculino , Técnicas de Diagnóstico Molecular , Filogenia , Prevalência , Estudos Prospectivos , Infecções por Vírus Respiratório Sincicial/virologia , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Estações do Ano , Análise de Sequência de DNA , Proteínas Virais/genética , Viroses/classificação , Viroses/epidemiologia
14.
J Infect Dis ; 223(2): 268-277, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32564083

RESUMO

BACKGROUND: In severe bronchiolitis, it is unclear if delayed clearance or sequential infection of respiratory syncytial virus (RSV) or rhinovirus (RV) is associated with recurrent wheezing. METHODS: In a 17-center severe bronchiolitis cohort, we tested nasopharyngeal aspirates (NPA) upon hospitalization and 3 weeks later (clearance swab) for respiratory viruses using PCR. The same RSV subtype or RV genotype in NPA and clearance swab defined delayed clearance (DC); a new RSV subtype or RV genotype at clearance defined sequential infection (SI). Recurrent wheezing by age 3 years was defined per national asthma guidelines. RESULTS: Among 673 infants, RSV DC and RV DC were not associated with recurrent wheezing, and RSV SI was rare. The 128 infants with RV SI (19%) had nonsignificantly higher risk of recurrent wheezing (hazard ratio [HR], 1.31; 95% confidence interval [CI], .95-1.80; P = .10) versus infants without RV SI. Among infants with RV at hospitalization, those with RV SI had a higher risk of recurrent wheezing compared to children without RV SI (HR, 2.49; 95% CI, 1.22-5.06; P = .01). CONCLUSIONS: Among infants with severe bronchiolitis, those with RV at hospitalization followed by a new RV infection had the highest risk of recurrent wheezing.


Assuntos
Bronquiolite/epidemiologia , Coinfecção/epidemiologia , Infecção Hospitalar/epidemiologia , Hospitalização , Infecções por Picornaviridae/epidemiologia , Sons Respiratórios , Infecções por Vírus Respiratório Sincicial/epidemiologia , Bronquiolite/diagnóstico , Bronquiolite/virologia , Coinfecção/virologia , Infecção Hospitalar/virologia , Humanos , Incidência , Tipagem Molecular , Infecções por Picornaviridae/virologia , Modelos de Riscos Proporcionais , Recidiva , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Rhinovirus/classificação , Rhinovirus/genética , Carga Viral
15.
J Virol ; 95(2)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33115881

RESUMO

This study identified a genotype of respiratory syncytial virus (RSV) associated with increased acute respiratory disease severity in a cohort of previously healthy term infants. The genotype (2stop+A4G) consists of two components. The A4G component is a prevalent point mutation in the 4th position of the gene end transcription termination signal of the G gene of currently circulating RSV strains. The 2stop component is two tandem stop codons at the G gene terminus, preceding the gene end transcription termination signal. To investigate the biological role of these RSV G gene mutations, recombinant RSV strains harboring either a wild-type A2 strain G gene (one stop codon preceding a wild-type gene end signal), an A4G gene end signal preceded by one stop codon, or the 2stop+A4G virulence-associated combination were generated and characterized. Infection with the recombinant A4G (rA4G) RSV mutant resulted in transcriptional readthrough and lower G and fusion (F) protein levels than for the wild type. Addition of a second stop codon preceding the A4G point mutation (2stop+A4G) restored G protein expression but retained lower F protein levels. These data suggest that RSV G and F glycoprotein expression is regulated by transcriptional and translational readthrough. Notably, while rA4G and r2stop+A4G RSV were attenuated in cells and in naive BALB/c mice compared to that for wild-type RSV, the r2stop+A4G RSV was better able to infect BALB/c mice in the presence of preexisting immunity than rA4G RSV. Together, these factors may contribute to the maintenance and virulence of the 2stop+A4G genotype in currently circulating RSV-A strains.IMPORTANCE Strain-specific differences in respiratory syncytial virus (RSV) isolates are associated with differential pathogenesis in mice. However, the role of RSV genotypes in human infection is incompletely understood. This work demonstrates that one such genotype, 2stop+A4G, present in the RSV attachment (G) gene terminus is associated with greater infant disease severity. The genotype consists of two tandem stop codons preceding an A-to-G point mutation in the 4th position of the G gene end transcription termination signal. Virologically, the 2stop+A4G RSV genotype results in reduced levels of the RSV fusion (F) glycoprotein. A recombinant 2stop+A4G RSV was better able to establish infection in the presence of existing RSV immunity than a virus harboring the common A4G mutation. These data suggest that regulation of G and F expression has implications for virulence and, potentially, immune evasion.


Assuntos
Evasão da Resposta Imune/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/patogenicidade , Proteínas Virais de Fusão/genética , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica , Genótipo , Humanos , Lactente , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Filogenia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Índice de Gravidade de Doença , Proteínas Virais de Fusão/imunologia , Carga Viral/genética , Virulência/genética , Replicação Viral/genética
16.
J Med Microbiol ; 69(9): 1203-1212, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32755531

RESUMO

Introduction. Respiratory syncytial virus (RSV) is the most frequently identified viral agent in children with lower respiratory tract infection (LRTI). No data are available to date regarding RSV genotypes circulating in Tunisia.Aim. The aim of the present study was to investigate the genetic variability of the glycoprotein G gene in Tunisian RSV strains.Methodology. Nasopharyngeal aspirates were collected from infants hospitalized for LRTI in five Tunisian hospitals. All specimens were screened for RSV by a direct immunofluorescence assay (DIFA). To molecularly characterize Tunisian RSV strains, a phylogenetic analysis was conducted. Randomly selected positive samples were subjected to reverse transcription PCR amplifying the second hyper-variable region (HVR2) of the G gene.Results. Among a total of 1417 samples collected between 2015 and 2018, 394 (27.8 %) were positive for RSV by DIFA. Analysis of 61 randomly selected RSV strains revealed that group A RSV (78.7 %) predominated during the period of study as compared to group B RSV (21.3 %). The phylogenetic analysis showed that two genotypes of RSV-A were co-circulating: the ON1 genotype with a 72-nt duplication in HVR2 of the G gene was predominant (98.0 % of RSV-A strains), while one RSV-A strain clustered with the NA1 genotype (2.0 %). Concerning Tunisian group B RSV strains, all sequences contained a 60-nt insertion in HVR2 and a clustered BA10 genotype.Conclusion. These data suggest that RSV-A genotype ON1 and RSV-B genotype BA10, both with duplications in the G gene, were widely circulating in the Central coastal region of Tunisia between 2015 and 2018.


Assuntos
Filogenia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Pré-Escolar , Feminino , Genótipo , Humanos , Lactente , Masculino , Epidemiologia Molecular , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Estações do Ano , Tunísia/epidemiologia
17.
J Gen Virol ; 101(10): 1056-1068, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32723429

RESUMO

Human respiratory syncytial virus (HRSV) is an important respiratory pathogen causing a spectrum of illness, from common cold-like symptoms, to bronchiolitis and pneumonia requiring hospitalization in infants, the immunocompromised and the elderly. HRSV exists as two antigenic subtypes, A and B, which typically cycle biannually in separate seasons. There are many unresolved questions in HRSV biology regarding the interactions and interplay of the two subtypes. Therefore, we generated a reverse genetics system for a subtype A HRSV from the 2011 season (A11) to complement our existing subtype B reverse genetics system. We obtained the sequence (HRSVA11) directly from an unpassaged clinical sample and generated the recombinant (r) HRSVA11. A version of the virus expressing enhanced green fluorescent protein (EGFP) from an additional transcription unit in the fifth (5) position of the genome, rHRSVA11EGFP(5), was also generated. rHRSVA11 and rHRSVA11EGFP(5) grew comparably in cell culture. To facilitate animal co-infection studies, we derivatized our subtype B clinical isolate using reverse genetics toexpress the red fluorescent protein (dTom)-expressing rHRSVB05dTom(5). These viruses were then used to study simultaneous in vivo co-infection of the respiratory tract. Following intranasal infection, both rHRSVA11EGFP(5) and rHRSVB05dTom(5) infected cotton rats targeting the same cell populations and demonstrating that co-infection occurs in vivo. The implications of this finding on viral evolution are important since it shows that inter-subtype cooperativity and/or competition is feasible in vivo during the natural course of the infection.


Assuntos
Coinfecção/virologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/fisiologia , Sistema Respiratório/virologia , Infecções Respiratórias/virologia , Animais , Linhagem Celular , Feminino , Genótipo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Pulmão/virologia , Mucosa Respiratória/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Genética Reversa , Sigmodontinae
18.
J Infect Dis ; 222(Suppl 7): S666-S671, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32702120

RESUMO

Targeted metagenomics using strand-specific libraries with target enrichment is a sensitive, generalized approach to pathogen sequencing and transcriptome profiling. Using this method, we recovered 13 (76%) complete human respiratory syncytial virus (RSV) genomes from 17 clinical respiratory samples, reconstructed the phylogeny of the infecting viruses, and detected differential gene expression between 2 RSV subgroups, specifically, a lower expression of the P gene and a higher expression of the M2 gene in RSV-A than in RSV-B. This methodology can help to relate viral genetics to clinical phenotype and facilitate ongoing population-level RSV surveillance and vaccine development. Clinical Trials Registration. NCT03627572 and NCT03756766.


Assuntos
Genoma Viral , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Lactente , Filogenia , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/metabolismo , Análise de Sequência , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
19.
Arch Virol ; 165(5): 1069-1077, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32144544

RESUMO

We investigated the molecular epidemiology of respiratory syncytial virus (RSV) isolated from children during 28 consecutive seasons (1990-2018) and the genetic variability of the duplication region of RSV genotypes ON1 and BA in South Korea. RSV was identified using culture-based methods in Hep-2 cells and was grouped as RSV-A or RSV-B by an immunofluorescence assay. The second hypervariable region of the G gene was sequenced for genotyping. The nucleotide and deduced amino acid sequences of the duplication region of RSV ON1 and BA were analyzed. A total of 670 RSV-A and 233 RSV-B isolates were obtained. For RSV-A, the NA1 genotype predominated during the 2004/2005-2011/2012 seasons. The ON1 genotype was first detected in 2011 and has since replaced all other genotypes. For RSV-B, the GB3 genotype predominated during the 1999/2000-2005/2006 seasons, but the BA genotype also replaced all other genotypes of RSV-B after the first season in which it was isolated (2005/2006). In ON1 and BA genotype RSV strains, novel sequence types of the duplication region of the G gene were identified in 50-95% and 33-80% of the isolates, respectively, in each season. The ON1 and BA9 genotypes are responsible for the current epidemics of RSV infection in South Korea. The sequences in the duplication region of the G gene have evolved continuously and might be sufficient for the identification of specific strains of the RSV-A ON1 and RSV-B BA genotypes.


Assuntos
Variação Genética , Genótipo , Infecções por Vírus Respiratório Sincicial/epidemiologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Proteínas Virais de Fusão/genética , Duplicação Gênica , Humanos , Epidemiologia Molecular , República da Coreia/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Análise de Sequência de DNA
20.
Influenza Other Respir Viruses ; 14(4): 403-411, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32126161

RESUMO

BACKGROUND: RSV is a leading cause of lower respiratory tract infection in infants. Monitoring RSV glycoprotein sequences is critical for understanding RSV epidemiology and viral antigenicity in the effort to develop anti-RSV prophylactics and therapeutics. OBJECTIVES: The objective is to characterize the circulating RSV strains collected from infants in South Africa during 2015-2017. METHODS: A subset of 150 RSV-positive samples obtained in South Africa from HIV-unexposed and HIV-exposed-uninfected infants from 2015 to 2017, were selected for high-throughput next-generation sequencing of the RSV F and G glycoprotein genes. The RSV G and F sequences were analyzed by a bioinformatic pipeline and compared to the USA samples from the same three-year period. RESULTS: Both RSV A and RSV B co-circulated in South Africa during 2015-2017, with a shift from RSV A (58%-61% in 2015-2016) to RSV B (69%) in 2017. RSV A ON1 and RSV B BA9 genotypes emerged as the most prevalent genotypes in 2017. Variations at the F protein antigenic sites were observed for both RSV A and B strains, with dominant changes (L172Q/S173L) at antigenic site V observed in RSV B strains. RSV A and B F protein sequences from South Africa were very similar to the USA isolates except for a higher rate of RSV A NA1 and RSV B BA10 genotypes in South Africa. CONCLUSION: RSV G and F genes continue to evolve and exhibit both local and global circulation patterns in South Africa, supporting the need for continued national surveillance.


Assuntos
Infecções por HIV/virologia , Filogenia , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Antígenos Virais/genética , Feminino , Genótipo , Infecções por HIV/epidemiologia , Humanos , Lactente , Masculino , RNA Viral/genética , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/isolamento & purificação , Análise de Sequência de DNA , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...